这篇文章主要介绍了python计算牛顿迭代多项式的方法,涉及Python数学运算的相关技巧,需要的朋友可以参考下
本文实例讲述了python计算牛顿迭代多项式的方法。分享给大家供大家参考。具体实现方法如下:
''' p = evalPoly(a,xData,x). Evaluates Newton's polynomial p at x. The coefficient vector 'a' can be computed by the function 'coeffts'. a = coeffts(xData,yData). Computes the coefficients of Newton's polynomial. ''' def evalPoly(a,xData,x): n = len(xData) - 1 # Degree of polynomial p = a[n] for k in range(1,n+1): p = a[n-k] + (x -xData[n-k])*p return p def coeffts(xData,yData): m = len(xData) # Number of data points a = yData.copy() for k in range(1,m): a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1]) return a
希望本文所述对大家的Python程序设计有所帮助。
版权声明:
本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。
- 上一篇: 用C++封装MySQL的API的教程
- 下一篇: python计算对角线有理函数插值的方法