pdpc法
1、qc七大手法:关系图法、KJ法、系统图法、矩阵图法、矩阵数据分析法、PDPC法、网络图法内容什么?
QC7大手法的内容是什么?
新QC七大手法
1. 关联图法--TQM推行, 方针管理, 品质管制改善, 生产方式,
生产管理改善
2.KJ法--开发, TQM推行, QCC推行, 品质改善
3. 系统图法--开发, 品质保证, 品质改善
4.矩阵图法--开发, 品质改善, 品质保证
5.矩阵开数据解析法--企划, 开发, 工程解析
6. PDPC法--企划, 品质保证, 安全管理, 试作评价, 生产量管理
改善, 设备管理改善
7. 箭法图解法--品质设计, 开发, 品质改善
新旧QC七大手法
一、QC七大手法分为:
1、简易七大手法:甘特图、流程图、5W2H、愚巧法、雷达法、统计图、推移图
2、QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图
3、QC新七大手法:关连图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法
计数值:以合格数、缺点数等使用点数计算而得的数据一般通称为计数数据。(数一数)
计量值:以重要、时间、含量、长度等可以测量而得来的数据,一般为计量值,如长度、重要、浓度,有小数点的凡四舍五入都称之。(量一量)
4、QC七大手法由五图,一表一法组成:
五图:柏拉图、散布图、直方图、管制图、特性要因分析图(鱼骨图)
一表:查检表(甘特图)
一法:层别法
二、介绍简易七大手法:
1、甘特图:
用途
1、工作进度安排
2、查核工作进度
3、掌握现况
4、日常计划管理用
是一种最容易、最有效的一种进度自我管理。
2、统计图(条形图):
用途
1、异常数据一目了然。
2、容易对照比较。
3、易看出结论。
应用最普通报章、杂志均可看到的图表。
应用到层别法。
3、推移图(趋势图):
用途
1、数据对时间变化管理使用。
2、可以把握现状、掌握问题点。
3、效果、差异比较。
了解数据差异最简单的方法,应用很广。
次品率、推移图。
4、流程图:
用途
1、工作内容之表示。
2、容易掌握工作站。
3、教育、说明用。
工作说明、内容之简易表示方法。
5、圆图:
用途
1、用以比较各部分构成比例。
2、以时钟旋转方向由大到小排列,将圆分成若干个扇形。
3、直截了当的描绘各项所占比例。
用到层别法。
三、介绍旧七大手法:
1、查检表(CHECK LIST)
用途
1、日常管理用
2、收集数据用
3、改善管理用
帮助每个人在最短时间内完成必要之数据收集
2、层别法:
用途
1、应用层别法、找出数据差异因素而对症下药。
2、以4M,每1M层别之。
1、 借用其他图形,本身无图形。
2、 由大到小排列。
3、柏拉图(计数值统计):
借用层别图。
由生产现场所收集到后数据,必须有效的加以分析、运用,才能成为人价值的数据。而将此数据加以分类、整理,并作成图表,充分的掌握问题点及重要原因,是时下不可缺的管理工具。而最为现场人员所使用于数据管理的图为柏拉图。
定义:1)根据所收集的数据,按不良原因、不良状况、不良项目、不良发生后位置等不同区分标准而加以整理、分类,借以寻求占最大比率的原因状况或位置,按其大小顺序后排列,再加上累积值的图形。
2)从柏拉图可看出哪一项目有问题,其影响度如何,以判断问题之所在,并针对问题点采取改善措施,故又称ABC图,(分析前面2-3项重要项目之控制。)
3)又因图后排列是依大小顺序,故又可称为排列图。
4)柏拉图制作说明:
A 决定数据的分类项目
分类的方式有:
a 结果的分类包括不良项目别、场所别、时间别、工程别。
b原因的分类包括材料别(厂商、成份等)。方式别(作业条件、程序、方法、环境等)、人(年龄、熟练度、经验等)、设备别(机械、工具等)。
分类的项目必须合乎问题的症结,一般的分类先从结果分类上着手,以便洞悉问题之所在,然后再进行原因分析,分析出问题产生之原因,以便采取有效的对策。将此分析的结果,依其结果与原因分别绘制柏拉图。
B 决定收集数据的期间,并按分类项目,在期间内收集数据。
考虑发生问题的状况,从中选择恰当的期限(如一天、一周、一月、一季或一年为期间)来收集数据。
C 依分类项目别,做数据整理,并作成统计表。
a 各项目按出现数据大小顺序排列,其他项排在最后一项,并求其累积数。(其他项不可大于前三项,若大于时应再细分)。
b求各项目数据所占比率累计数之影响度。
c其他项排在最后,若太大时,须检讨是否其他重要要因需提出。
不良率(%)=各项不良数÷总检查数*100
影响度(%)=各项不良数÷总不良数×100
D 记入图表纸并依数据大小排列画出柱状图。
a 于图表用纸记入纵轴及横轴。纵轴左侧填不良数、不良率,或损失金额,纵轴右侧刻度表示累计影响度(比率);在最上方刻100%,左方则依收集数据大小做适当刻度。横轴填分类项目名称,由左至右按照所占比率大小记入,其他项则记在最右边。
b 横轴与纵轴应做适度比例,横轴不宜长于纵轴。
E 绘累计曲线:
a点上累计不良数(或累计不良率)。
b 用折线连结。
F 绘累计比率:
a 纵轴右边绘折线终点为100%。
b 将0~100%间分成10等分,把%的分度记上(即累计影响度)。
c 标出前三项(或四项)之累计影响度是否>80%或接近80%。
J 记入必要的事项:
a 标题(目的)。
b 数据收集期间。
c 数据合计(总检查、不良数、不良率…等)。
d 工程别。
e 作成者(包括记录者,绘图者…)。
绘图注意事项:1)柏拉图之横轴是按项目别,依大小顺序由高而低排列,[其他]项排在最后一位。
2)柏拉图之柱形图宽度要一致,纵轴与横轴比例为3:2。
3)纵轴最高点为总不良数,且所表示之间距离一致。
4)次数少的项目太多时,可考虑将后几项归纳成[其他]项;其他项不应大于前几项,若大于时应再分析。有时,改变层别或分类的方法,亦可使分类的项目减少。通常,项目别包括其他项在内,以不要超过4~6项为原则。
5)改善前后之比较时:
a 改善后,横轴项目别依照出现大小顺序由高而低排列。
b 前后比较基准须一致,且刻度应相同,则更易于比较。
4、管制图:
(1) 何为管制图:
为使现场之品质状况达成吾人所谓之“管理”作业,一般均以侦测产品之
品质特性来替代“管理”作业是否正常,而品质特性是随着时间、各种状况有着高低的变化; 那么到底高到何种程度或低至何种状况才算吾人所谓异常?故设定一合理之高低界限,作为吾人探测现场制程状况是否在“管理”状态,即为管制图之基本根源。
管制图是于1924年由美国品管大师修哈特博士所发明。而主要主义即是【一种以实
际产品品质特性与依过去经验所研判之制程之能力的管制界 限比较,而以时间顺序
用图形表示者】。
(2) 基本特性:
一般管制图纵轴均设定为产品的品质特性,而以制程变化的数据为分度;横轴则为检测制品之群体代码或编号或年月日等,以时间别或制造先后别,依顺序将点绘于图上。
在管制图上有三条笔直的横线,中间的一条为中心线(Center Line,CL),一般以蓝色之实线绘制。左上方的一条称为管制上限(Upper Control Limit,UCL),在下方的称为管制下限(Lower Control Limit,LCL),对上、下管制界限之绘制,则一般均用红色之虚线表现之,以表示可接受之变异范围;至于实际产品品质特性之点连线条则大都以黑色实线表现绘制之。
(3) 管制图原理:
1)品质变异之形成原因
一般在制造的过程中,无论是多么精密的设备,环境,其品质特性一定都会有变动,绝无法做完全一样的制品;而引起变动的原因可分为两种,一种为偶然(机遇)原因,一种为异常(非机遇)原因。
2)管制图界限之构成:
管制图是以常分配中之三个标准差为理论依据,中心线为平均值,上、下管制界限以平均数加减三个标准差(±3σ)之值,以判断制程中是否有问题发生,此即修哈特博士所创之法。
(4) 管制图种类:
1)依数据性质分类:
A 计量值管制图:所谓计量值系指管制图之数据均属于由量具实际量测而得;如长度、重量、浓度等特性均为连续性者。常用的有:
a 平均数与全距管制图(X(—)-R Chart)
b 平均数与标准差管制图(X(—)-σChart)
c 中位数与全距管制图(X(~)-R Chart)
d 个别值与移动全距管制图(X-Rm Chart)
e 最大值与最小值管制图(L-S Chart)
B 计数值管制图:所谓计数值是指管制图之数据均属于单位计算数者而得;如不良数、缺点数等间断性数据均属之。常用的有:
a 不良率管制图(P Chart)
b 不良数管制图(Pn chart ,又称np chart或d chart)
c 缺点数管制图(C chart)
d 单位缺点数管制图(U chart)
2)计数值与计量值管制图之应用比较
计量值
计数值
优点
1、甚灵敏,容易调查真因。
2、可及时反应不良,使品质稳定。
1、所须数据可用简单方法获得。
2、对整体品质状况之了解较方便。
缺点
1、抽样频度较高、费时麻烦。
2、数据须测定,且再计算,须有训练之人方可胜任。
1、无法寻得不良之真因。
2、及时性不足,易延误时机。
(5) 管制图之绘制:
介绍:计量值管制图(X-R)常用
1)先行收集100个以上数据,依测定之先后顺序排列之。
2)以2~5个数据为一组(一般采4~5个),分成约20-25组。
3)将各组数据记入数据表栏位内。
4)计算各组之平均值X。(取至测定值最小单位下一位数)
5)计算各组之全距R。(最大值-最小值=R)
6)计算总平均X。
X=(X1+X2+X3+…+Xk)/k=ξXi/k(k为组数)
7)计算全距之平均R:
R=(R1+R2+R3+…+Rk)/k=ξRi/k
8)计算管制界限
X管制图:中心线(CL)=X
管制上限(UCL)=X+A2R
管制下限(LCL)=X-A2R
R管制图:中心线(CL)=R
管制上限(UCL)=D4R
管制下限(LCL)=D3R
A2,D3,D4之值,随每组之样本数不同而有差异,但仍遵循三个标准差之原理,计算而得,今已被整理成常用系数表。
9)绘制中心线及管制界限,并将各点点入图中。
10)将各数据履历及特殊原因记入,以备查考、分析、判断。
(6) 管制点之点绘制要领:
1)各项工程名称、管制特性、测定单位、设备别、操作(测定)者、样本大小、材料别、环境变化…等任何变更资料应清楚填入,以便资料之分析整理。
2)计量值变更管制图(X-R,X-R…等)其X管制图与R管制图的管制界限席宽度取法,一般原则以组之样本数(n)为参考,X管制图之单位分度约为R管制图之1/n倍。
(纵轴管制界限宽度约20-30m/m;横轴各组间隔约2-5mm)
3)中心线(CL)以实线记入,管制界限则记入虚线;各线上须依线别分别记入CL、UCL、LCL、等符号。
4)CL、UCL、LCL之数值位数计算比测定值多两位数即可。
(各组数据之平均计算数则取比测定值多一位数)
5)点之绘制有[•]、[○]、[△]、[×]…等,最好由厂内统一规定。
6)变管制图,二个管制图之绘制间隔最少距20mm以上,可行的话最好距30mm左右。
(7) 管制图之判读:
1)管制状态之判断(制程于稳定状态)
A 多数点子集中在中心线附近。
B 少数点子落在管制界限附近。
C 点子之分布与跳动呈随机状态,无规则可循。
D 无点子超出管制界限以外。
2)可否延长管制限界限做为后续制程管制用之研判基准:
A 连续25点以上出现在管制界限线内时(机率为93.46%)。
B 连续35点中,出现在管制界限外点子不超出1点时。
C 连续100点中,出现在管制界限外点子不超出2点时。
制程在满足上述条件时,虽可认为制程在管制状态而不予变动管制界限,但并非点子超出管制界限外亦可接受;这此超限之点子必有异常原因,故应追究调查原因并予以消除之。
3)检定判读原则:
A 应视每一个点子为一个分配,非单纯之点。
B 点子之动向代表制程之变化;虽无异常之原因,各点子在界限内仍会有差异存在。
C 异常之一般检定原则:(如图所示)
(8) 管制图使用之注意事项:
1)管制图使用前,现场作业应予标准化作业完成。
2)管制图使用前,应先决定管制项目,包括品质特性之选择与取样数量之决定。
3)管制界限千万不可用规格值代替。
4)管制图种类之遴选应配合管制项目之决定时搭配之。
5)抽样方法以能取得合理样组为原则。
6)点子超出界限或有不正常之状态,必须利用各种措施研究改善或配合统计方法,把异常原因找出,同时加以消除。
7)X-R管制图里组的大小(n),一般采n=4-5最适合。
8)R管制图没下限,系因R值是由同组数据之最大值减最小值而得,因之LCL取负值没有意义。
9)制程管制做得不好,管制图形同虚设,要使管制图发挥效用,应使产品制程能力中之Cp值(制程精密度)大于1以上
2、qc七大手法
品检的七大手法
“七大手法”主要是指企业质量管理中常用的质量管理工具,有“老七种”和“新七种”之分。“老七种”有分层法、调查表、排列法、因果图、直方图、控制图和相关图,新的QC七种工具分别是系统图、关联图、亲和图、矩阵图、箭条图、PDPC法以及矩阵数据分析法等。
“老七种”:
1、分层法(分类法、分组法)
质量问题的原因多方面,来源于不同条件(4M1E)。为真实反映质量问题的实质性原因和变化规律,须将大量综合性统计数据按数据的不同来源(需要进行追溯)进行分类,再进行质量分析的方法。
2、调查表
用于收集和记录数据的一种表格形式,
便于按统一的方式收集数据并进行统计计算和分析
3、排列图
对发生频次从最高到最低的项目进行排列——简单图示技术。
4、直方图
直方图也叫质量分布图、矩形图、柱形图、频数图。它是一种用于工序质量控制的质量数据分布图形,是全面质量管理过程中进行质量控制的重要方法之一。直方图适用于对大量计量数值进行整理加工,找出其统计规律,也就是分析数据分布的形态,以便对其整体的分布特征进行推断。
5、因果图(Causeand effectdiagram)
——石川图、特色要因图、树枝图、鱼刺图
以结果为特性,以原因为因素,将原因和结果用箭头联系,表示因果关系。
6、控制图
也叫质量管理图或监控图。它是通过把质量波动的数据绘制在图上,观察它是否超过控制界限来判断工序质量能否处于稳定状态。这种方法是在1924年由美国的休哈特首创,应用简单、效果较佳、极易掌握,能直接监视控制生产过程,起到保证质量的作用。控制图的一般格式如图8-7所示。
7、相关图法
相关图法又叫散布图法、简易相关分析法。它是通过运用相关图研究两个质量特性之间的相关关系,来控制影响产品质量中相关因素的一种有效的常用方法。相关图是把两个变量之间的相关关系,用直角坐标系表示的图表,它根据影响质量特性因素的各对数据,用小点表示填列在直角坐标图上,并观察它们之间的关系。
“新七种”:
1、系统图
表示某个质量问题与组成要素之间的关系,从而明确问题的重点,寻求达到目的所应采取的最适当的手段和措施的树状图形(倒立逻辑关系因果图)
2、关联图
把几个问题及涉及这些问题的关系极为复杂的因素之间的因果关系用箭头连接起来的图形。
3、KJ法——亲和图
KJ法(川喜田二郎KawakitaJiko)——利用卡片对语言资料进行
归纳整理的方法。KJ法的主体方法,把收集到的大量有关特定主题的意见、观点、想法等语言文字资料,按它们相互亲近的程度用图形加以归纳、汇总。
4、矩阵图
从作为问题的事项中,找出成对的因素群,分别排列成行和列
在其交点上表示成对因素间相关程度的图形。
方法——多元思考。
5、PDPC过程决策程序图
在制定计划阶段,进行系统设计时,,事先预测可能发生的障碍
(不理想事态或结果),从而设计出一系列对策措施,以最大的
可能引向最终目标。
6、箭条图
箭条图又称为网络计划技术,我国称为统筹法,它是安排和编制最佳日程计划,有效地实施管理进度的一种科学管理方法,其工具是箭条图。
所谓箭条图,是把推进计划所必须的各项工作,按其时间顺序和从属关系,用网络形式表示的一种"矢线图"。一项任务或工程,可以分解为许多作业,这些作业在生产工艺和生产组织上相互依赖、相互制约,箭条图可以把各项作业之间的这种依赖和制约关系清晰地表示出来。通过箭条图,能找出影响工程进度的关键和非关键因素,因而能进行统筹协调,合理地利用资源,提高效率与效益。
7、矩阵数据分析法
矩阵图上各元素间的关系如果能用数据定量化表示,就能更准确地整理和分析结果。这种可以用数据表示的矩阵图法,叫做矩阵数据分析法。在QC新七种工具中,数据矩阵分析法是唯一种利用数据分析问题的方法,但其结果仍要以图形表示。
数据矩阵分析法的主要方法为主成分分析法(Principal component analysis),利用此法可从原始数据获得许多有益的情报。主成分分析法是一种将多个变量化为少数综合变量的一种多元统计方法。
七大手法的画法
其实很简单,任何的手法都是以查检表为基础,也就是要获得第一手资料才可以着手进行柏拉图等一些图表的制作,
品管七大手法是常用的统计管理方法,又称为初级统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、散布图等所谓的QC七工具。运用这些工具,可以从经常变化的生产过程中,系统地收集与产品质量有关的各种数据,并用统计方法对数据进行整理,加工和分析,进而画出各种
图表,计算某些数据指标,从中找出质量变化的规律,实现对质量的控制。日本著名的质量管理专家石川馨曾说过,企业内95%的质量管理问题,可通过企业上上下下全体人员活用这QC七工具而得到解决。全面质量管理的推行,也离不开企业各级、各部门人员对这些工具的掌握与灵活应用。
1、 统计分析表
统计分析表是利用统计表对数据进行整理和初步分析原因的一种工具,其格式可多种多样,这种方法虽然较单,但实用有效。
2、 数据分层法
数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多如果不把这些困素区别开来,难以得出变化的规律。数据分层可根据实际情况按多种方式进行。例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层,等等。数据分层法经常与上述的统计分析表结合使用。
数据分层法的应用,主要是一种系统概念,即在于要想把相当复杂的资料进行处理,就得懂得如何把这些资料加以有系统有目的加以分门别类的归纳及统计。
科学管理强调的是以管理的技法来弥补以往靠经验靠视觉判断的管理的不足。而此管理技法,除了建立正确的理念外,更需要有数据的运用,才有办法进行工作解析及采取正确的措施。
如何建立原始的数据及将这些数据依据所需要的目的进行集计,也是诸多品管手法的最基础工作。
举个例子:我国航空市场近几年随着开放而竞争日趋激烈,航空公司为了争取市场除了加强各种措施外,也在服务品质方面下功夫。我们也可以经常在航机上看到客户满意度的调查。此调查是通过调查表来进行的。调查表的设计通常分为地面的服务品质及航机上的服务品质。地面又分为订票,候机;航机又分为空服态度,餐饮,卫生等。透过这些调查,将这些数据予以集计,就可得到从何处加强服务品质了。
3、排列图(柏拉图)
排列图又称为柏拉图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。后来美国质量管理专家朱兰博士运用柏拉图的统计图加以延伸将其用于质量管理。排列图是分析和寻找影响质量主原因素的一种工具,其形式用双直角坐标图,左边纵坐标表示频数(如件数 金额等),右边纵坐标表示频率(如百分比表示)。分折线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左向右排列。通过对排列图的观察分析可抓住影响质量的主原因素。这种方法实际上不仅在质量管理中,在其他许多管理工作中,例如在库存管理中,都有是十分有用的。
在质量管理过程中,要解决的问题很多,但往往不知从哪里着手,但事实上大部分的问题,只要能找出几个影响较大的原因,并加以处置及控制,就可解决问题的80%以上。柏拉图是根据归集的数据,以不良原因,不良状况发生的现象,有系统地加以项目别(层别)分类,计算出各项目别所产生的数据(如不良率,损失金额)及所占的比例,再依照大小顺序排列,再加上累积值的图形。
在工厂或办公室里,把低效率,缺损,制品不良等损失按其原因别或现象别,也可换算成损失金额的80%以上的项目加以追究处理,这就是所谓的柏拉图分析。
柏拉图的使用要以层别法的项目别(现象别)为前提,依经顺位调整过后的统计表才能画制成柏拉图。
柏拉图分析的步骤;
(1) 将要处置的事,以状况(现象)或原因加以层别。
(2) 纵轴虽可以表示件数,但最好以金额表示比较强烈。
(3) 决定搜集资料的期间,自何时至何时,作为柏拉图资料的依据,期限间尽可能定期。
(4) 各项目依照合半之大小顺位左至右排列在横轴上。
(5) 绘上柱状图。
(6) 连接累积曲线。
柏拉图法(重点管制法),提供了我们在没法面面俱到的状况下,去抓重要的事情,关键的事情,而这些重要的事情又不是靠直觉判断得来的,而是有数据依据的,并用图形来加强表示。也就是层别法提供了统计的基础,柏拉图法则可帮助我们抓住关键性的事情。
4、因果分析图
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
某项结果之形成,必定有原因,应设法利用图解法找出其因。首先提出了这个概念的是日本品管权威石川馨博士,所以特性原因图又称[石川图]。因果分析图,可使用在一般管理及工作改善的各种阶段,特别是树立意识的初期,易于使问题的原因明朗化,从而设计步骤解决问题。
(1) 果分析图使用步骤
步骤1:集合有关人员。
召集与此问题相关的,有经验的人员,人数最好4-10人。
步骤2:挂一张大白纸,准备2-3支色笔。
步骤3:由集合的人员就影响问题的原因发言,发言内容记入图上,中途不可批评或质问。(脑力激荡 法)
步骤4:时间大约1个小时,搜集20-30个原因则可结束。
步骤5:就所搜集的原因,何者影响最大,再由大轮流发言,经大家磋商后,认为影响较大予圈上红色 圈。
步骤6:与步骤5一样,针对已圈上一个红圈的,若认为最重要的可以再圈上两圈,三圈。
步骤7:重新画一张原因图,未上圈的予于去除,圈数愈多的列为最优先处理。
因果分析图提供的是抓取重要原因的工具,所以参加的人员应包含对此项工作具有经验者,才易秦效。
(2)因果分析图与柏拉图之使用
建立柏拉图须先以层别建立要求目的之统计表。建立柏拉图之目的,在于掌握影响全局较大的重要少数项目。再利用特性原因图针对这些项目形成的原因逐予于探讨,并采取改善对策。所以因果分析图可以单独使用,也可连接柏拉图使用。
(3) 因果分析图再分析
要对问题形成的原因追根究底,才能从根本上解决问题。形成问题之主要原因找出来以后,再以实验设计的方法进行实验分析,拟具体实验方法,找出最佳工作方法,问题也许能得以彻底解决,这是解决问题,更是预防问题。
任何一个人,任何一个企业均有它追求的目标,但在追求目标的过程中,总会有许许多多有形与无形的障碍,而这些障碍是什么,这些障碍何于形成,这些障碍如何破解等问题,就是原因分析图法主要的概念。
一个管理人员,在他的管理工作范围内所追求的目标,假如加以具体的归纳,我们可得知从项目来说不是很多。然而就每个追求的项目来说,都有会有影响其达成目的的主要原因及次要原因,这些原因就是阻碍你达成工作的变数。
如何将追求的项目一一地罗列出来,并将影响每个项目达成的主要原因及次要原因也整理出来,并使用因果分析图来表示,并针对这些原因有计划地加以强化,将会使你的管理工作更加得心应手。
同样地,有了这些原因分析图,即使发生问题,在解析问题的过程中,也能更快速,更可靠。
5、直方图
直方图又称柱状图,它是表示数据变化情况的一种主要工具。用直方图可以将杂乱无章的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对于资料中心值或分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉到一些统计学的概念,首先要对数据进行分组,因此如何合理分组是其中的关键问题。分组通常是按组距相等的原则进行的两个关键数字是分组数和组距。
6、散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。这种问题在实际生产中也是常见的,例如热处理时淬火温度与工件硬度之间的关系,某种元素在材料中的含量与材料强度的关系等。这种关系虽然存在,但又难以用精确的公式或函数关系表示,在这种情况下用相关图来分析就是很方便的。假定有一对变量x 和 y,x 表示某一种影响因素,y 表示某一质量特征值,通过实验或收集到的x 和 y 的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断 x和 y 的相关情况。
在我们的生活及工作中,许多现象和原因,有些呈规则的关连,有些呈不规则形有关连。我们要了解它,就可借助散布图统计手法来判断它们之间的相关关系。
7、控制图
控制图又称为管制图。由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出管制图使用后,管制图就一直成为科学管理的一个重要工具,特别在质量管理方面成了一个不可或缺的管理工具。它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
统计管理方法是进行质量控制的有效工具,但在应用中必须注意以下几个问题,否则的话就得不到应有的效果。这些问题主要是:1 )数据有误。数据有误可能是两种原因造成的,一是人为的使用有误数据,二是由于未真正掌握统计方法;2 )数据的采集方法不正确。如果抽样方法本身有误则其后的分析方法再正确也是无用的;3) 数据的记录,抄写有误;4 )异常值的处理。通常在生产过程取得的数据中总是含有一些异常值的,它们会导致分析结果有误。
以上概要介绍了七种常用初级统计质量管理七大手法即所谓的“QC七工具”,这些方法集中体现了质量管理的“以事实和数据为基础进行判断和管理”的特点。最后还需指出的是,这些方法看起来都比较简单,但能够在实际工作中正确灵活地应用并不是一件简单的事。
3、QC七大手法是?
1、QC旧七大手法:
特性要因分析图、柏拉图、查检表、层别法、散布图、回直方图、管制图。
2、QC新七大手法:答
关系图、系统图法、KJ法、箭头图法、矩阵图法、PDPC法、矩阵数据解析法。
品管新七大手法,也叫品管新七大工具,其作用主要是用较便捷的手法来解决一些管理上的问题,与原来的“旧”品管七大手法相比,它主要应用在中高层管理上,而旧七手法主要应用在具体的实际工作中。因此,新七大手法应用于一些管理体系比较严谨和管理水准比较高的公司。
(3)pdpc法扩展资料:
一、起源
新旧七种工具都是由日本人总结出来的。日本人在提出旧七种工具推行并获得成功之后,1979年又提出新七种工具。
之所以称之为“七种工具”,是因为日本古代武士在出阵作战时,经常携带有七种武器,所谓七种工具就是沿用了七种武器。有用的质量统计管理工具当然不止七种。除了新旧七种工具以外,常用的工具还有实验设计、分布图、推移图等。
二、成功条件
1、企业最高主管的高度重视。
2、要有专门的品质管制技术人员。
3、要有全员的品质管制普及教育,提高全员品质意识。
4、要有健全的品管组织。
4、PDPC法的运用实例
PDPC法有五大方面的用处,它们分别是:
1、制定目标管理中间的实施计划,怎样在实施过程中解决各种困难和问题;
2、制定科研项目的实施计划;
3、对整个系统的重大事故进行预测;
4、制定工序控制的一些措施;
5、义务选择处理纠纷的各种方案。
实际上PDPC法在哪里都可以应用,远远不止这五个。只要做事情,就可能有失败,如果能把可能失败的因素提前都找出来,制定出一系列的对策措施,就能够稳步地、轻松地到达目的地。
任何一件事情的调整都是很不容易的,整个生产系统就像一张巨大的网,要动一个地方跟着就要动一片。
所以说,PDPC法是一个系统思考问题的方法,而生产、生活的复杂性,也要求人们在办事情、做计划、干事业的时候要深思熟虑,不能马虎大意、随随便便,否则的话就会一招不慎,满盘皆输。这也是“成于思,毁于随”的真正意义所在。 PDPC使用步骤:
1.前期组织:成立一个团队,确定PDPC要解决的课题
2.提出基本解决方案:给问题提出一个基本解决方案,可以从过程或者产品的树图开始,把它绘制在挂图或者白板上
3.谈论难点:范围应尽量广泛,同时应包括不可预料的问题及风险
4.记录重要内容:第一步就开回答“这一步可能出什么错”和“还有其他方法吗?按照可能性讨论每个答案、风险和应对措施,把它们都写下来
5.优化问题和应对措施:综合考虑,记录下所有问题和应对措施,指定一个完成该过程的日期
6.评估:在指定的日期进行评估,继续后面的工作
5、什么是品质管理的七大手法?
品质管理七大手法:品管七大手法是常用的统计管理方法,又称为初级统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、直方图等所谓的QC七工具。
1、亲和图也叫KJ法,是指把收集到大量的各种数据、资料,按照其之间的亲和性(相近性)归纳整理,使问题明朗化,从而有利于问题解决的一种方法。
2、关联图又叫关系图,它是解决关系复杂、因素之间又相互关联的“原因与结果”或“目的与手段”等单一或多个问题的图示技术,是根据逻辑关系理清复杂问题、整理语言文字资料的一种方法。
3、树图又叫系统图。它是表示某个质量问题与其组成要素之间的关系,从而明确问题的重点,寻找达到目的所应采取的最适当的手段和措施的一种树枝状图。
4、矩阵图是以矩阵的形式分析问题与因素、因素与因素、现象与因素之间相互关系的图形。一般常把问题、因素、现象放在图中的行或列的位置,而把它们之间的相互关系放在行和列的交点处,并用不同符号表示出它们的相关程度。
5、箭头图又叫矢线图。它是用网络的形式来安排一项工程(产品)的日历进度,说明作业之间的关系,以期高效率管理进度的一种方法。
6、过程决策程序图亦称PDPC法。它的特征是使用预测科学和系统的思想方法,对现实理想目的进行多方案设计。在动态实施过程中,随着事态发展所产生的各种结果及时调整方案,运用预先安排好的程序来保证预期结果。
7、矩阵数据分析是将矩阵图上各元素间的关系用数据定量化表示的一种变量解析法,是新QC七大手法中唯一的数值资料解析法。矩阵数据分析法与矩阵图法类似,它区别于矩阵图法的是:不是在矩阵图上填符号,而是填数据,形成一个分析数据的矩阵。
(5)pdpc法扩展资料:
品质管理中可能出现的问题
1、数据有误。数据有误可能是两种原因造成的,一是人为的使用有误数据,二是由于未真正掌握统计方法;
2、数据的采集方法不正确。如果抽样方法本身有误则其后的分析方法再正确也是无用的;
3、数据的记录,抄写有误;
4、异常值的处理。通常在生产过程取得的数据中总是含有一些异常值的,它们会导致分析结果有误。
品质管理统计质量控制是美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出的控制图为起点,半个多世纪以来有了很大发展,这些方法可大致分为以下三类。
1、初级统计。又称为常用的统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、散布图等所谓的QC七工具(或叫品管七大手法)。
运用这些工具,可以从经常变化的生产过程中,系统地收集与产品质量有关的各种数据,并用统计方法对数据进行整理,加工和分析,进而画出各种图表,计算某些数据指标,从中找出质量变化的规律,实现对质量的控制。
日本著名的质量管理专家石川馨曾说过,企业内95%的质量管理问题,可通过企业上上下下全体人员活用这QC七工具而得到解决。全面质量管理的推行,也离不开企业各级、各部门人员对这些工具的掌握与灵活应用。
2、中级统计。包括抽样调查方法、抽样检验方法、功能检查方法、实验计划法、方法研究等。这些方法不一定要企业全体人员都掌握,主要是有关技术人员和质量管理部门的人使用。
3、高级统计。包括高级实验计划法、多变量解析法。这些方法主要用于复杂的工程解析和质量解析,而且要借助于计算机手段,通常只是专业人员使用这些方法。
6、QC七大手法
品管老七大手法
鱼骨图:鱼骨追原因. (寻找因果关系)
柏拉图:柏拉抓重点. (找出“重要的少数”回)
层别法答:层别作解析. (按层分类,分别统计分析)
查检表:查检集数据. (调查记录数据用以分析)
散布图:散布看相关. (找出两者的关系)
直方图:直方显分布. (了解数据分布与制程能力)
管制图:管制找异常. (了解制程变异)
品管新七大手法:
关联图——理清复杂因素间的关系;
系统图——系统地寻求实现目标的手段;
亲和图——从杂乱的语言资料中汲取信息;
矩阵图——多角度考察存在的问题,变量关系;
PDPC法——预测设计中可能出现的障碍和结果;
箭条图——合理制定进度计划;矩阵资料解析法—多变数转化少变量资料分析。
7、QC,PDPC法,如何理解
PDPC===>(Process Decision Program Chart)(请给个最佳回答谢谢)
1.PDPC法简介
在质量管理中,要达到目标或解决问题,总是希望按计划推进原定各实施步骤。但是,随着各方面情况的变化,当初拟定的计划不一定行等通,往往需要临时改变计划。特别是解决困难的质量问题,修改计划的情况更是屡屡发生。为应付这种意外事件,一种有助于使事态向理想方向发展的的解决问题的方法PDPC法被提出。
PDPC法也称为过程决策程序图法,其工具就是PDPC图。是运筹学中的一种方法。所谓PDPC法,是为了完成某个任务或达到某个目标,在制定行动计划或进行方案设计时,预测可能出现的障碍和结果,并相应地提出多种应变计划的一种方法。这样在计划执行过程中遇到不利情况时,仍能按第二、第三或其它计划方案进行,以便达到预定的计划目标,如图所示。
2.PDPC法的基本步骤
l 召集有关人员讨论所要解决的课题;
l 从自由讨论中提出达到理想状态的手段、措施;
l 对提出的措施,列举出预测的结果及遇到困难时应采取的措施和方案;
l 将各研究措施按紧迫程度、所需工时、实施的可能性及难易程度予以分类;
l 进而,决定各项措施实施的先后顺序,并用箭条项理想状态方向连接起来;
l 落实实施负责人及实施期限;
l 不断修订PDPC图。
3.PDPC法的特点
l 从全局、整体掌握系统的状态,因而可作全局性判断;
l 可按时间先后顺序掌握系统的进展情况;
l 密切注意系统进程的动向,掌握系统输入与输出间的关系;
l 情报及时,计划措施可被不断补充、修订。
l 可从全局、从整体掌握系统状态以作出全局性判断;可按时间顺序掌握系统的进展情况。
8、QA有哪七大法?
补充一下,一楼说的是旧七大手法,比较偏重数据分析一块。
QC新七大手法指的是:关系图法、版KJ法、系统权图法、矩阵图法、矩阵数据分析法、PDPC法、网络图法。对于语言信息的收集和整理相对有实用性。
希望可以帮助到你~
9、QC七大手法中的PAPC法具体是指什么,简单阐述一下
QC七大手法中没有PAPC, 只有PDCA
P: Plan, 即计划
D: Do, 即实施, 去行动, 去做
C: Check,检查, 也可理解为回顾回, 检讨, 总结
A: Action, 指的是有价值答的动作, 区别于D的地方在于, 此时是要有一些改进或者革新, 例如: D阶段可能只是开动机器, 记录参数, 做出统计, 而A阶段可能就是改变参数, 改变材料, 或者改变机器的转数, 摆放, 或者是改变图纸中的尺寸数据.etc.
与pdpc法相关的资料
川气东送 德胜尚城 当桥梁工程师3 北京元洲 控制点 杉木桩 建筑工程司法解释一 八里钢材市场 建筑机电工程抗震设计规范 投标保证金递交时间 电子捕鱼器 潮白人家户型图 装修资质等级 容积的计算公式 觊立德导航地图车载免费版 江都房地产 百分表的使用方法 丽江老君山 机械设备包括哪些 石屑 防水知识 宁夏人才 我的世界窗帘怎么做 地线颜色 建筑工程实习报告 剪跨比 预防煤气中毒 郑州地铁线路图 特种作业人员有哪些 变压器开关电源 婚纱设计图 会计核算的基本前提是什么 华阳佳园 就业的意义 如何看建筑图纸 仁安悦榕庄 圆融大厦 海泉湾度假村 计量单位换算 上海15号线线路图高清 环境保护措施 路桥建设 批发汉堡 水平仪使用方法图解 好老公守则 不低于 管道流速计算公式 大学生职业生涯规划论文版权声明:
本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。