这篇文章主要介绍了Python基于动态规划算法计算单词距离的方法,实例分析了Python动态规划算法的实现与使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
本文实例讲述了Python基于动态规划算法计算单词距离。分享给大家供大家参考。具体如下:
#!/usr/bin/env python #coding=utf-8 def word_distance(m,n): """compute the least steps number to convert m to n by insert , delete , replace . 动态规划算法,计算单词距离 >>> print word_distance("abc","abec") 1 >>> print word_distance("ababec","abc") 3 """ len_1=lambda x:len(x)+1 c=[[i] for i in range(0,len_1(m)) ] c[0]=[j for j in range(0,len_1(n))] for i in range(0,len(m)): # print i,' ', for j in range(0,len(n)): c[i+1].append( min( c[i][j+1]+1,#插入n[j] c[i+1][j]+1,#删除m[j] c[i][j] + (0 if m[i]==n[j] else 1 )#改 ) ) # print c[i+1][j+1],m[i],n[j],' ', # print '' return c[-1][-1] import doctest doctest.testmod() raw_input("Success!")
希望本文所述对大家的Python程序设计有所帮助。
版权声明:
本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。
- 上一篇: Python实现模拟登录及表单提交的方法
- 下一篇: Python计算已经过去多少个周末的方法