mutilprocess像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。
介绍
Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信。
想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统。
实现
Job
首先创建一个Job类,为了测试简单,只包含一个job id属性
job.py
#!/usr/bin/env python # -*- coding: utf-8 -*- class Job: def __init__(self, job_id): self.job_id = job_id
Master
Master用来派发作业和显示运行完成的作业信息
master.py
#!/usr/bin/env python # -*- coding: utf-8 -*- from Queue import Queue from multiprocessing.managers import BaseManager from job import Job
class Master:
def __init__(self): # 派发出去的作业队列 self.dispatched_job_queue = Queue() # 完成的作业队列 self.finished_job_queue = Queue() def get_dispatched_job_queue(self): return self.dispatched_job_queue def get_finished_job_queue(self): return self.finished_job_queue def start(self): # 把派发作业队列和完成作业队列注册到网络上 BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue) BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue) # 监听端口和启动服务 manager = BaseManager(address=('0.0.0.0', 8888), authkey='jobs') manager.start() # 使用上面注册的方法获取队列 dispatched_jobs = manager.get_dispatched_job_queue() finished_jobs = manager.get_finished_job_queue() # 这里一次派发10个作业,等到10个作业都运行完后,继续再派发10个作业 job_id = 0 while True: for i in range(0, 10): job_id = job_id + 1 job = Job(job_id) print('Dispatch job: %s' % job.job_id) dispatched_jobs.put(job) while not dispatched_jobs.empty(): job = finished_jobs.get(60) print('Finished Job: %s' % job.job_id) manager.shutdown() if __name__ == "__main__": master = Master() master.start()
Slave
Slave用来运行master派发的作业并将结果返回
slave.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import time from Queue import Queue from multiprocessing.managers import BaseManager from job import Job
class Slave:
def __init__(self): # 派发出去的作业队列 self.dispatched_job_queue = Queue() # 完成的作业队列 self.finished_job_queue = Queue()
def start(self):
# 把派发作业队列和完成作业队列注册到网络上 BaseManager.register('get_dispatched_job_queue') BaseManager.register('get_finished_job_queue') # 连接master server = '127.0.0.1' print('Connect to server %s...' % server) manager = BaseManager(address=(server, 8888), authkey='jobs') manager.connect() # 使用上面注册的方法获取队列 dispatched_jobs = manager.get_dispatched_job_queue() finished_jobs = manager.get_finished_job_queue() # 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业 while True: job = dispatched_jobs.get(timeout=1) print('Run job: %s ' % job.job_id) time.sleep(1) finished_jobs.put(job) if __name__ == "__main__": slave = Slave() slave.start()
测试
分别打开三个linux终端,第一个终端运行master,第二个和第三个终端用了运行slave,运行结果如下
master
$ python master.py Dispatch job: 1 Dispatch job: 2 Dispatch job: 3 Dispatch job: 4 Dispatch job: 5 Dispatch job: 6 Dispatch job: 7 Dispatch job: 8 Dispatch job: 9 Dispatch job: 10 Finished Job: 1 Finished Job: 2 Finished Job: 3 Finished Job: 4 Finished Job: 5 Finished Job: 6 Finished Job: 7 Finished Job: 8 Finished Job: 9 Dispatch job: 11 Dispatch job: 12 Dispatch job: 13 Dispatch job: 14 Dispatch job: 15 Dispatch job: 16 Dispatch job: 17 Dispatch job: 18 Dispatch job: 19 Dispatch job: 20 Finished Job: 10 Finished Job: 11 Finished Job: 12 Finished Job: 13 Finished Job: 14 Finished Job: 15 Finished Job: 16 Finished Job: 17 Finished Job: 18 Dispatch job: 21 Dispatch job: 22 Dispatch job: 23 Dispatch job: 24 Dispatch job: 25 Dispatch job: 26 Dispatch job: 27 Dispatch job: 28 Dispatch job: 29 Dispatch job: 30
slave1
$ python slave.py Connect to server 127.0.0.1... Run job: 1 Run job: 2 Run job: 3 Run job: 5 Run job: 7 Run job: 9 Run job: 11 Run job: 13 Run job: 15 Run job: 17 Run job: 19 Run job: 21 Run job: 23
slave2
$ python slave.py Connect to server 127.0.0.1... Run job: 4 Run job: 6 Run job: 8 Run job: 10 Run job: 12 Run job: 14 Run job: 16 Run job: 18 Run job: 20 Run job: 22 Run job: 24
以上内容是小编给大家介绍的Python使用multiprocessing实现一个最简单的分布式作业调度系统,希望对大家有所帮助!
版权声明:
本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。
- 上一篇: 简单讲解Python中的字符串与字符串的输入输出
- 下一篇: 实例讲解Python中函数的调用与定义