首页 编程教程正文

python障碍式期权定价公式

piaodoo 编程教程 2020-02-02 11:56:31 1216 0 python教程

这篇文章主要为大家详细介绍了python障碍式期权定价公式,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

早期写的python障碍式期权的定价脚本,供大家参考,具体内容如下

#coding:utf-8
'''
障碍期权
q=x/s
H = h/x H 障碍价格
[1] Down-and-in call cdi
[2] Up-and-in call cui
[3] Down-and-in put pdi
[4] Up-and-in put pui
[5] Down-and-out call cdo
[6] Up-and-out call cuo
[7] Down-and-out put pdo
[8] Up-and-out put puo

'''
from math import log,sqrt,exp,ceil
from scipy import stats
import datetime
import tushare as ts
import pandas as pd
import numpy as np
import random
import time as timess
import os

def get_codes(path='D:\\code\\20180313.xlsx'):     #从代码表格从获取代码
 codes = pd.read_excel(path)
 codes = codes.iloc[:,1]    
 return codes

def get_datas(code,N=1,path='D:\\data\\'):        #获取数据N=1当天数据
 datas = pd.read_csv(path+eval(code)+'.csv',encoding='gbk',skiprows=2,header=None,skipfooter=N,engine='python').dropna() #读取CSV文件 名称为股票代码 解gbk skiprows跳过前两行文字 第一行不做为表头
 date_c = datas.iloc[:,[0,4,5]]     #只用第0 列代码数据和第4列收盘价数据
 date_c.index = datas[0]
 return date_c

def get_sigma(close,std_th):
 x_i = np.log(close/close.shift(1)).dropna()
 sigma = x_i.rolling(window=std_th).std().dropna()*sqrt(244)
 return sigma

def get_mu(sigma,r):
 mu = (r-pow(sigma,2)/2)/pow(sigma,2)
 return mu

def get_lambda(mu,r,sigma):
 lam = sqrt(mu*mu+2*r/pow(sigma,2))
 return lam

def x_y(sigma,T,mu,H,lam,q=1):
 x1 = log(1/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 x2 = log(1/(q*H))/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 y1 = log(H*H/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 y2 = log(q*H)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 z = log(q*H)/(sigma*sqrt(T))+lam*sigma*sqrt(T)
 return x1,x2,y1,y2,z

def get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z,q=1):
 f1 = phi*1*stats.norm.cdf(phi*x1,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x1-phi*sigma*sqrt(T),0.0,1.0)
 f2 = phi*1*stats.norm.cdf(phi*x2,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x2-phi*sigma*sqrt(T),0.0,1.0)
 f3 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y1,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y1-eta*sigma*sqrt(T),0.0,1.0)
 f4 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y2,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0)
 f5 = (H-1)*exp(-r*T)*(stats.norm.cdf(eta*x2-eta*sigma*sqrt(T),0.0,1.0)-pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0))
 f6 = (H-1)*(pow(H*q,(mu+lam))*stats.norm.cdf(eta*z,0.0,1.0)+pow(H*q,(mu-lam))*stats.norm.cdf(eta*z-2*eta*lam*sigma*sqrt(T),0.0,1.0))
 return f1,f2,f3,f4,f5,f6

def main(param,t,r=0.065):
 typeflag = ['cdi','cdo','cui','cuo','pdi','pdo','pui','puo']
 r = log(1+r)
 T = t/365
 codes = get_codes()
 H = 1.2
 for i in range(len(codes)):
 sdbs = []
 for j in typeflag:
 code = codes.iloc[i]
 datas = get_datas(code)
 close = datas[4]
 sigma = get_sigma(close,40)[-1]
 mu = get_mu(sigma,r)
 lam = get_lambda(mu,r,sigma)
 x1,x2,y1,y2,z = x_y(sigma,T,mu,H,lam)
 eta = param[j]['eta']
 phi = param[j]['phi']
 f1,f2,f3,f4,f5,f6 = get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z)
 if j=='cdi':
 sdb = f1-f2+f4+f5
 if j=='cui':
 sdb = f2-f3+f4+f5
 if j=='pdi':
 sdb = f1+f5
 if j=='pui':
 sdb = f3+f5
 if j=='cdo':
 sdb = f2+f6-f4
 if j=='cuo':
 sdb = f1-f2+f3-f4+f6
 if j=='pdo':
 sdb = f6
 if j=='puo':
 sdb = f1-f3+f6
 sdbs.append(sdb)
 print(T,r,sigma,H,sdbs)
if __name__ == '__main__':
 param = {'cdi':{'eta':1,'phi':1},'cdo':{'eta':1,'phi':1},'cui':{'eta':-1,'phi':1},'cuo':{'eta':-1,'phi':1},
 'pdi':{'eta':1,'phi':-1},'pdo':{'eta':1,'phi':-1},'pui':{'eta':-1,'phi':-1},'puo':{'eta':-1,'phi':-1}}
 t = 30
 main(param,t)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

版权声明:

本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。

有关影视版权:本站只供百度云网盘资源,版权均属于影片公司所有,请在下载后24小时删除,切勿用于商业用途。本站所有资源信息均从互联网搜索而来,本站不对显示的内容承担责任,如您认为本站页面信息侵犯了您的权益,请附上版权证明邮件告知【754403226@qq.com】,在收到邮件后72小时内删除。本文链接:https://www.piaodoo.com/440.html

搜索