首页 学习方法正文

高中数学古典概型教案大全

piaodoo 学习方法 2022-03-26 12:24:28 938 0 高三数学

高中数学古典概型教案大全

  在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。接下来是小编为大家整理的高中数学古典概型教案大全,希望大家喜欢!

  高中数学古典概型教案大全一

  古典概型

  一、目标引领

  1.理解随机事件和古典概率的概念?.

  2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.

  ?重点及难点

  重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.

  ?二、自学探究

  在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,

  试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.

  试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.

  三、合作交流

  在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?

  学生回答:

  在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是 .

  在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是 .

  引入新的概念:

  基本事件:我们把试验可能出现的结果叫做基本事件.

  古典概率:把具有以下两个特点的概率模型叫做古典概率.

  (1)一次试验所有的基本事件只有有限个.

  例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.

  (2)每个基本事件出现的可能性相等.

  试验一和试验二其基本事件出现的可能性均相同.

  随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.

  随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.

  必然事件:试验后必定出现的事件叫做必然事件,记作 .例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.

  不可能事件:实验中不可能出现的事件叫做不可能事件,

  基本事件有如下的两个特点:

  (1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.

  四、精讲点拨

  例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?

  解:有ab,ac,ad,bc,bd,cd.

  例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?

  答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.

  高中数学古典概型教案大全二

  课 题 古典概型 课 型 高一新授课 教学目标 理解古典概型及其概率计算公式,并能计算有关随机事件的概率 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 教学难点 如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 教学方法 导学式、启发式教学 教 具 多媒体辅助 教学过程 教学内容与教师活动 学生活动 设计意图

  创设情境引出课题

  问题1:考察两个试验:

  (1)抛掷一枚质地均匀的硬币的试验;

  (2)掷一颗质地均匀的骰子的试验。

  问:在这两个试验中,可能的结果分别有哪些?

  教师引导学生思考 问题1:学生思考结果且给出基本事件的特点1

  问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。

  问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考 问题2:学生归纳与总结, 问题2设计意图:通过举例,引出基本事件的特点2。 问题3:基本事件有什么特点?

  教师加以引导与启发,利用基本事件的关系发现基本事件的特点 问题3:学生口答 问题3设计意图:提高学生概括总结能力 问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。

  问题4:学生列举出基本事件。 问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

  通过设疑引出概念

  问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?

  (2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。

  问题1学生得到答案且深层次的考虑问题

  问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

  问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。

  (1)试验中所有可能出现的基本事件只有有限个;(有限性)

  (2)每个基本事件出现的可能性相等。(等可能性) 问题2学生观察和初步概括归纳古典概率模型及特征

  问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。

  问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

  (2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么? 问题3学生互相交流,回答补充得到的答案 问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

  例题分析加深理例题分析加深理

  例2、在数学考试中单选题是常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结

  例2学生思考、讨论、交流,说出看法

  例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。

  变式:假设我们现在将单选题改为不定项选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少

  教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。 变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。 变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。

  例3、 同时掷两个骰子,计算:(1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。

  教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。

  例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式

  例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  高中数学古典概型教案大全三

  一、教材分析

  1、教材的地位和作用

  本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的 。古典概型是一种特殊的、最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值,有利于学生理解概率的概念和概率值的存在,也为后面学习几何概型作铺垫。同时学习了本节内容,能够帮助学生解决生活中的一些问题,激发学生的学习兴趣,因此本节知识在高中概率中占有相当重要的地位。

  2、教学目标

  知识与技能

  (1)理解古典概型及其概率计算公式,

  (2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

  过程与方法

  根据本节课的内容和学生的实际水平,通过试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

  情感、态度与价值观

  树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  3、教学重点与难点

  重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  二、教法与学法分析

  1、教法分析

  为突出重点,突破难点,使学生能达到本节课设定的目标,根据本节课的内容特点,我采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法。在教学过程中,利用多媒体等手段构建数学模型,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来,并利用了情感暗示以及恰当的评价等教学方法。

  2、学法分析

  学生在教师创设的问题情景中,通过观察类比、思考探究、概括归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  三、教学过程分析

  (一)创设情境,引出课题

  通过设置问题情境,激发学生的学习兴趣,同时设置问题:在不用做模拟试验的情况下,如何求解随机事件A、B发生的概率呢?从而引入新课。

  (二)新知探究

  1、考察两个试验:

  ①掷一枚质地均匀的硬币的试验;

  ②掷一枚质地均匀的骰子的试验。

  这两个试验出现的结果分别有几个?(2个,6个)

  2、思考:在试验二中,出现偶数点包含哪些基本事件?点数大于4可有哪些基本事件构成?

  在试验一及二中,必然事件可以表示成基本事件的和吗?不可能事件呢?

  提出问题:上述两个试验的每个结果之间都有什么特点?

  3、基本事件的特点:

  (1) 任何两个基本事件是互斥的;

  (2) 任何事件(除不可能事件)都可以表示成基本事件的和

  学生——思考、讨论

  老师——利用试验给出所有可能出现的结果即基本事件。

  老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。

  学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  这节课的重点是理解古典概型,通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。最后,总结归纳出基本事件的特点。然后再通过举例,进一步加深对基本事件的理解,从而为引出古典概型的定义做好铺垫。

  ?二、通过类比,引出概念

  例1 从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?(6个)

  ?设计意图:使学生掌握基本事件,学会用列举法列出所有的基本事件,为归纳出古典概型的特征提供了素材。

  问题:上述试验和例1的共同特点是什么?

  试验中所有可能出现的基本事件只有有限个;

  每个基本事件出现的可能性相等。

  老师——引导学生列举时做到不重复、不遗漏

  学生——列举出基本事件

  老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  为了引出古典概型的概念,设计了例1。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与例1中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。

  ?三、观察类比,推导公式

  思考:古典概型下,基本事件出现的概率是多少?随机事件按出现的概率又该如何计算?



高中数学古典概型教案大全相关文章

★ 数学教案高中教学范文5篇

★ 2020高中数学工作反思范文

★ 高考数学必考重点知识大全

版权声明:

本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。

有关影视版权:本站只供百度云网盘资源,版权均属于影片公司所有,请在下载后24小时删除,切勿用于商业用途。本站所有资源信息均从互联网搜索而来,本站不对显示的内容承担责任,如您认为本站页面信息侵犯了您的权益,请附上版权证明邮件告知【754403226@qq.com】,在收到邮件后72小时内删除。本文链接:https://www.piaodoo.com/63362.html

搜索