首页 学习方法正文

常用的高中数学解题方法

piaodoo 学习方法 2022-03-26 12:25:11 877 0 高三数学

常用的高中数学解题方法

高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。下面是小编整理分享的常用的高中数学解题方法,欢迎阅读与借鉴,希望对你们有帮助!

1常用的高中数学解题方法

数形结合法

高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。

假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得。所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

排除解题法

排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。

例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。

2高中数学解三角形解题方法

解三角形,要求记忆三角函数公式,不仅要熟练记忆,牢牢掌握解三角形的解题技巧,还要能够将已经掌握的知识灵活运用。开放型题型更是需要结合题目要求开拓新思路,以一个全新的思考方式去思考解决问题,这也就是开放型题型的新颖之处,也是开放型题型的难点。一般开放型题型在题目阅读中增加了难度,相应来说,解题的难度就会减少,那么只要能够读懂题目,了解题目要求,理清楚解题的思路就可以轻松的完成三角函数题目的解答。

但是对于高中生来说对于解三角形函数的了解已经很深入了,只是高中生一般就掌握了解三角形的基本解题思路,对照相应的题型进行练习解答,这么一来,高中生也就变成了解题机器,只会一种思路,一种思考方式,不会变通,如果在这时候遇到了开放型题型,就会完全傻了眼。这时候,在大形势趋向于开放型题型,高中生只能在自己掌握的知识基础上,多练练开放型题型,运用自己了解的三角函数知识根据开放型题型的题目要求去解答问题。

高中生对于三角函数的知识已经掌握的很熟练了,只是对于这些开放型题型就是缺少练习,多找一些开放型题型来练习,增加高中生对开放型题型题目的理解程度,因为题目要求难度增加,对应的解题难度就会减少,这样一来只要能够多练习开放型题型,熟练掌握解题思路,能够读懂题目要求,就会很简单的解答这方面的问题。

3高中数学解题方法

构思解题方法

联想即有一种心理过程而引起另一种与之相连的心理过程的现象。 知识的掌握过程中的联想即以所形成的问题的表征为提取线索,去激活脑中有关的知识结构。联想是使抽象化或概括化的知识得以具体化的必要环节,解决问题总是依赖过去的知识经验。 比如在解决数学问题时,根据所形成的问题表征,去激活回忆与该问题有关的知识方法、公式、定理、定义、学过的例题、解过的题目等,并考虑能否利用它们的结果或者方法,克服在引进适当的辅助元素后加以利用,能否找出与该问题有关的一个特殊的问题或一个一般的问题或一个类似的问题。 如果能够从所给问题中辨认出符合问题目标的某个熟悉的模式,那么就能提出相应的解题设想,进而解决问题。

在解题过程中,联想活动的进行将因问题的复杂程度和学生对所学知识的掌握程度的不同,而有扩展与压缩、直接与间接。意识到知识的重现与意识到知识的重现的分别,有些情况下,学生不能联想,难以激活原来的知识结构,或者即使联想,但联想的内容错误,常受到与其相近的比较巩固的旧的知识的干扰。 其主要原因是领会水平较低或者领会错误,或原有的知识不巩固,或缺乏联想的技能。 为产生准确而灵活的联想,除了要保证知识的领会和巩固外,还要有目的的进行联想技能的训练。

解析解题途径

解析即分析事物的矛盾,分析已知和未知双方的内部联系,寻找解决矛盾的条件和方法,数学解题中的解析即统一的分析问题中各部分的内在联系,分析问题的结构。 将问题结构的各部分与原有知识结构的有关部分进行匹配,解析的结果往往表现为提出解决当前问题的各种设想、制定具体的计划与步骤。探索解决问题的方法有多种多样,比如在解决数学问题时,可以通过分析、综合等基本的思维活动,并依据已有的知识,将问题的条件或结论作适当的变更和转换。

使之更易于利用某种原理或者概念来解决问题;也可以通过变换,使眼前的问题特殊化或者一般化;还可以利用适当的辅助问题。在探索解题方法的过程中,有时需要不断的多次变更问题,综合应用各种方法。解析是具体化过程的核心环节,决定着具体化的水平。 为此,在教学中应对解析技能的培养给予高度的重视。 教师可以遵循心智技能形成和培训的规律,来传授和提高学生的解析能力。

4高中数学解三角形的技巧

正弦定理

●教学目标。知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点。正弦定理的探索和证明及其基本应用。

●教学难点。已知两边和其中一边的对角解三角形时判断解的个数。

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtΔABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c

从而在直角三角形ABC中,asinA=bsinB=csinC

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ΔABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB,同理可得csinC=bsinB,从而asinA=bsinB=csinC。

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

余弦定理

●教学目标。知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

●教学重点。余弦定理的发现和证明过程及其基本应用;

●教学难点。勾股定理在余弦定理的发现和证明过程中的作用。

例1.在ΔABC中,已知a=23,c=6+2,B=60°,求b及A

(1)解:∵b2=a2+c2-2accsoB=(23)2+(6+2)2-2?23?(6+2)cos45°=12+(6+2)2-43

(3+1)8

∴b=22.

求A可以利用余弦定理,也可以利用正弦定理:

∵cosA=b2+c2-a22bc=(22)2+(6+2)2-(23)22×22×(6+2)=12,∴,A=60°.

解三角形的进一步讨论

●教学目标。知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

●教学重点。在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;

三角形各种类型的判定方法;三角形面积定理的应用。

●教学难点。正、余弦定理与三角形的有关性质的综合运用。

●教学过程。讲授新课

例.在ΔABC中,A=60°,b=1,面积为32,求a+b+csinA+sinB+sinC的值

分析:可利用三角形面积定理S=12absinC=12acsinB=12bcsinA以及正弦定理asinA=bsinB=csinC=a+b+csinA+sinB+sinC

解:由S=12bcsinA=32得c=2,则a2=b2+c2-2bccsoA=3,即a=3,从而a+b+csinA+sinB+sinC=asinA=2。


常用的高中数学解题方法相关文章

★ 高中数学解题方法技巧汇总

★ 高中数学常用的解题方法

★ 高中数学解题方法及技巧

★ 高中数学解题技巧方法

★ 历年真题学习:史上最全高中数学解题方法

★ 高中数学解题方法与思路

★ 高三备考:最全高中数学解题方法与答题注意事项

★ 高中数学的21中解题方法技巧

★ 高中数学解题特殊方法

版权声明:

本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。

有关影视版权:本站只供百度云网盘资源,版权均属于影片公司所有,请在下载后24小时删除,切勿用于商业用途。本站所有资源信息均从互联网搜索而来,本站不对显示的内容承担责任,如您认为本站页面信息侵犯了您的权益,请附上版权证明邮件告知【754403226@qq.com】,在收到邮件后72小时内删除。本文链接:https://www.piaodoo.com/63430.html

搜索