首页 学习方法正文

高三数学常考知识点

piaodoo 学习方法 2022-03-26 12:27:23 1104 0 高三数学

高三数学常考知识点

赞锐 时间:

我们总是感叹到高三的生活非常艰苦,总是有做不完的试卷和作业,每次发试卷的时候我们都会害怕自己这次考得不好,不要怕,我们已经努力学习做到了最好了,就要敢于面对它。下面是小编给大家带来的高三数学常考知识点,希望能帮助到你!

高三数学常考知识点1

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

(2)注意:讨论的时候不要遗忘了的情况。

(3)

第二部分函数与导数

1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高三数学常考知识点2

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R时,a+bi=0

a=0,b=0.

复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

高三数学常考知识点3

变化前的点坐标(x,y)

坐标变化

变化后的点坐标

图形变化平移横坐标不变,纵坐标加上(或减去)n(n>0)个单位长度

(x,y+n)或(x,y-n)

图形向上(或向下)平移了n个单位长度

纵坐标不变,横坐标加上(或减去)n(n>0)个单位长度

(x+n,y)或(x-n,y)

图形向右(或向左)平移了n个单位长度伸长横坐标不变,纵坐标扩大n(n>1)倍(x,ny)图形被纵向拉长为原来的n倍

纵坐标不变,横坐标扩大n(n>1)倍(nx,y)图形被横向拉长为原来的n倍压缩横坐标不变,纵坐标缩小n(n>1)倍(x,)图形被纵向缩短为原来的

纵坐标不变,横坐标缩小n(n>1)倍(,y)图形被横向缩短为原来的放大横纵坐标同时扩大n(n>1)倍(nx,ny)图形变为原来的n2倍缩小横纵坐标同时缩小n(n>1)倍(,)图形变为原来的

求与几何图形联系的特殊点的坐标,往往是向x轴或y轴引垂线,转化为求线段的长,再根据点所在的象限,醒上相应的符号。求坐标分两种情况:(1)求交点,如直线与直线的交点;(2)求距离,再将距离换算成坐标,通常作x轴或y轴的垂线,再解直角三角形。


高三数学常考知识点相关文章

★ 高三数学知识点考点总结大全

★ 高三数学必考知识点复习总结

★ 高三文科数学常考知识点归纳整理

★ 高三文科数学常考知识点整理

★ 高考数学必考知识点考点2020大全总结

★ 高三数学重要知识点整理

★ 高三数学复习重要知识点

★ 高考数学必考考点2020大全总结

★ 人教版高三年级数学必考知识点

版权声明:

本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。

有关影视版权:本站只供百度云网盘资源,版权均属于影片公司所有,请在下载后24小时删除,切勿用于商业用途。本站所有资源信息均从互联网搜索而来,本站不对显示的内容承担责任,如您认为本站页面信息侵犯了您的权益,请附上版权证明邮件告知【754403226@qq.com】,在收到邮件后72小时内删除。本文链接:https://www.piaodoo.com/63611.html

搜索