首页 编程教程正文

python 标准差计算的实现(std)

piaodoo 编程教程 2020-02-02 11:59:28 1023 0 python教程

这篇文章主要介绍了python 标准差计算的实现(std),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;

pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();

demo:

>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.std(a, ddof = 1)
3.0276503540974917
>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))
3.0276503540974917
>>> np.sqrt(( a.var() * a.size) / (a.size - 1))
3.0276503540974917

PS:numpy中标准差std的神坑

我们用Matlab作为对比。计算标准差,得到:

>> std([1,2,3])
ans =
   1

然而在numpy中:

>>> np.std([1,2,3])
0.81649658092772603

什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.

因此,想要正确调用,必须使ddof=1:

>>> np.std([1,2,3], ddof=1)
1.0

而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:

ss = StandardScaler()
ss.mean_ = np.mean(X, axis=0)
ss.scale_ = np.std(X, axis=0, ddof=1)
X_norm = ss.transform(X)

当X数据量较大时无所谓,当X数据量较小时则要尤为注意。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

版权声明:

本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。

有关影视版权:本站只供百度云网盘资源,版权均属于影片公司所有,请在下载后24小时删除,切勿用于商业用途。本站所有资源信息均从互联网搜索而来,本站不对显示的内容承担责任,如您认为本站页面信息侵犯了您的权益,请附上版权证明邮件告知【754403226@qq.com】,在收到邮件后72小时内删除。本文链接:https://www.piaodoo.com/780.html

搜索