本文来源吾爱破解论坛
昨天的例子https://www.52pojie.cn/thread-903416-1-1.html是一个简单的三层神经网络,acc达到0.98
今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992
先放代码,注释比较详细,变量名字看单词就能知道啥意思
[Python] 纯文本查看 复制代码
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) batch_size = 100 n_batch = mnist.train.num_examples // batch_size def weight_variable(shape, name): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, name=name) def bias_variable(shape, name): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial, name=name) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") # 1, 3位是1/ 2, 4位是步长 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") # 2, 3是步长 with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, 784], name='x_input') y = tf.placeholder(tf.float32, [None, 10], name='y_input') with tf.name_scope('x_image'): # 转变x格式为4D向量[batch, in_height, in_width, in_channels] 通道为1表示黑白 x_image = tf.reshape(x, [-1, 28, 28, 1], name='x_image') with tf.name_scope('Converlution_1'): # 初始化第一个卷积层的权重和偏置 with tf.name_scope('Weight_Converlution_1'): Weight_Converlution_1 = weight_variable([5, 5, 1, 32], name='Weight_Converlution_1') # 5 * 5的卷积窗口,32个卷积核从1个平面抽取特征 # 生成32个特征图 with tf.name_scope('Biase_Converlution_1'): Biase_Converlution_1 = bias_variable([32], name='Biase_Converlution_1') # 每个卷积核一个偏置值 # 把x_image和权值向量进行卷积,再加上偏置值,应用于relu激活函数 with tf.name_scope('Converlution2d_1'): Converlution2d_1 = conv2d(x_image, Weight_Converlution_1) + Biase_Converlution_1 with tf.name_scope('ReLu_1'): ReLu_Converlution_l = tf.nn.relu(Converlution2d_1) with tf.name_scope('Pool_1'): Pooling_1 = max_pool_2x2(ReLu_Converlution_l) # max-pooling with tf.name_scope('Converlution_2'): # 初始化第二个卷积层的权重和偏置 with tf.name_scope('Weight_Converlution_2'): Weight_Converlution_2 = weight_variable([5, 5, 32, 64], name='Weight_Converlution_2') # 5 * 5的卷积窗口,64个卷积核从32个平面抽取特征 # 生成64个特征图 with tf.name_scope('Biase_Converlution_2'): Biase_Converlution_2 = bias_variable([64], name='Biase_Converlution_2') with tf.name_scope('Cov2d_2'): Converlution2d_2 = conv2d(Pooling_1, Weight_Converlution_2) + Biase_Converlution_2 with tf.name_scope('ReLu_2'): ReLu_Converlution_2 = tf.nn.relu(Converlution2d_2) with tf.name_scope('Pool_2'): Pooling_2 = max_pool_2x2(ReLu_Converlution_2) # 初始化第一个全连接层 with tf.name_scope('Fully_Connected_L1'): with tf.name_scope('Weight_Fully_Connected_L1'): Weight_Fully_Connected_L1 = weight_variable([7 * 7 * 64, 1024], name='Weight_Fully_Connected_L1') # 上一层有7*7*64个神经元,全连接层有1024个神经元 with tf.name_scope('Biase_Fully_Connected_L1'): Biase_Fully_Connected_L1 = bias_variable([1024], name='Biase_Fully_Connected_L1') # 把池化层2的输出扁平化为1维 with tf.name_scope('Pooling_2_to_Flat'): Pooling_2_to_Flat = tf.reshape(Pooling_2, [-1, 7 * 7 * 64], name='Pooling_2_to_Flat') # -1表示任意值 with tf.name_scope('Wx_Plus_B1'): Wx_Plus_B1 = tf.matmul(Pooling_2_to_Flat, Weight_Fully_Connected_L1) + Biase_Fully_Connected_L1 with tf.name_scope('ReLu_Fully_Connected_L1'): ReLu_Fully_Connected_L1 = tf.nn.relu(Wx_Plus_B1) # Keep——Prob with tf.name_scope('keep_prob'): keep_prob = tf.placeholder(tf.float32, name='keep_prob') with tf.name_scope('Fully_Connected_L1_Drop'): Fully_Connected_L1_Drop = tf.nn.dropout(ReLu_Fully_Connected_L1, keep_prob, name='Fully_Connected_L1_Drop') # 初始化第二个全连接层 with tf.name_scope('Fully_Connected_L2'): with tf.name_scope('Weight_Fully_Connected_L2'): Weight_Fully_Connected_L2 = weight_variable([1024, 10], name='Weight_Fully_Connected_L2') with tf.name_scope('Biase_Fully_Connected_L2'): Biase_Fully_Connected_L2 = bias_variable([10], name='Biase_Fully_Connected_L1') with tf.name_scope('Wx_Plus_B2'): Wx_Plus_B2 = tf.matmul(Fully_Connected_L1_Drop, Weight_Fully_Connected_L2) + Biase_Fully_Connected_L2 with tf.name_scope('SoftMax'): prediction = tf.nn.softmax(Wx_Plus_B2) # 交叉熵函数 with tf.name_scope('cross_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction), name='cross_entropy') tf.summary.scalar('cross_entropy', cross_entropy) # 显示标量信息 tf.summary.scalar(tags, values, collections=None, name=None) # AdamOptimizer优化器 with tf.name_scope('train'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy) # 合并所有summary merged = tf.summary.merge_all() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_writer = tf.summary.FileWriter('logs/train', sess.graph) test_writer = tf.summary.FileWriter('logs/test', sess.graph) for i in range(101): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.5}) # 记录训练集计算的参数 summary = sess.run(merged, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1}) train_writer.add_summary(summary, i) # 记录训练集计算的参数 batch_xs, batch_ys = mnist.test.next_batch(batch_size) summary = sess.run(merged, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0}) test_writer.add_summary(summary, i) test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0}) train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images[:10000], y: mnist.train.labels[:10000], keep_prob: 1.0}) print("Iter " + str(i) + ", Testing Accuracy " + str(test_acc) + ", Training Accuracy " + str(train_acc))
然后看一下tensorboard做的结构图,以及迭代100次的accuracy和交叉熵曲线
TIM图片20190319210730.png (43.92 KB, 下载次数: 5)
下载附件 保存到相册
2019-3-19 21:08 上传
TIM图片20190319210713.png (40.09 KB, 下载次数: 2)
下载附件 保存到相册
2019-3-19 21:08 上传
TIM图片20190319210241.png (55.04 KB, 下载次数: 0)
下载附件 保存到相册
2019-3-19 21:08 上传
版权声明:
本站所有资源均为站长或网友整理自互联网或站长购买自互联网,站长无法分辨资源版权出自何处,所以不承担任何版权以及其他问题带来的法律责任,如有侵权或者其他问题请联系站长删除!站长QQ754403226 谢谢。